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The study of sink flow turbulent boundary layers is of particular relevance to 
the problem of laminarization. The reason lies in the fact that the acceleration 
parameter which principally determines when a turbulent boundary layer will 
begin to revert towards laminar is, in these flows, constant from station to station. 
The paper presents theoretical solutions to this class of boundary layer by making 
use of the Prandtl mixing-length formula to relate the turbulent shear stress 
to the mean velocity gradient. Near the wall the Van Driest recommendation 
for mixing length is adopted and the Van Driest function, A+, is chosen such that 
the skin friction coefficient does not exceed a certain maximum value. 

The predicted solutions, which are in good agreement with available experi- 
mental data, display a plausible shift from the turbulent towards the laminar 
solution as the acceleration parameter is increased. 

1. Introduction 
The flow that develops in a convergent channel between intersecting planes is 

one that has attracted considerable attention over the years. For laminar flow, 
similar solutions of the complete Navier-Stokes equations have been obtained 
(Jeffrey 1915; Hamel 1917; Rosenhead 1940; and Millsaps & Pohlhausen 1953) 
and, in the limit of very high Reynolds numbers, these reduce to the exact 
boundary-layer solution of Pohlhausen (1921). 

In  turbulent flow, it is the only flow configuration with a varying free-stream 
velocity in which the characteristic viscous and turbulence length scales may 
develop at  the same rate; thus, since similar laminar flows are attainable, com- 
pletely similar turbulent flows may also be achieved. For both laminar and 
turbulent flow these sink flow similar boundary layers have skin friction co- 
efficients and local Reynolds numbers which are invariant with x. 

For these sink flows, the acceleration parameter K (defined as ( v /U2)  dU/dx)  
is also a constant at all stations in the flow. Launder (1964a, 1964b), Moretti & 
Kays (1965), Pate1 (1965), Schraub & Kline (1965) found experimentally that 
the parameter K provided a useful indication of when an accelerated turbulent 
boundary layer would undergo reversion towards laminar. To the accuracy that 
K determines the onset of laminarization, the critical value may be taken as 
2-5 x 

A number of authors have attempted to derive from simple theoretical 
arguments the parameter which controls laminarization. The most popular 
‘local’ parameter is (v/pu:)dp/dx (which, except for a multiplicative constant, 
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is identical with Kc78). Recently Pate1 & Head (1968) have suggested that the 
local pressure gradient, which appears in the above term, should be replaced 
by the mean shear-stress gradient over a region near the wall h/ay; they there- 
fore proposed the group (v/pu:) ar/ay. While such a parameter is, conceptually, 
an improvement on earlier recommendations there is some uncertainty in 
deciding over what inner fraction of the boundary layer the shear-stress gradient 
should be averaged. Moreover, from an experimental standpoint, it is a formid- 
able task to measure with accuracy shear-stress gradients near the wall in acceler- 
ated turbulent boundary layers. Fortunately, in sink flows, the question of 
precisely which parameter brings about laminarization is not important since 
K ,  Kcj-8 and the Head-Pate1 parameter are all constant. 

The work of Schraub & Kline (1965) first suggested that the study of sink 
flow boundary layers might be of special relevance to the problem of laminariza- 
tion. They examined the sublayer structure of accelerated turbulent boundary 
layers by means of dye-injection and hydrogen-bubble techniques. They found 
that the sinuous low momentum sublayer streaks which are a feature of tur- 
bulent boundary layers on smooth surfaces did not suddenly cease to form above 
a certain level of acceleration. Instead they suffered a progressive diminution as 
the value of K was steadily increased. 

Although Schraub & Kline’s measurements were made in boundary-layer 
flows in which K varied in the z direction, the region of the boundary layer under 
study was so close to the surface that the flow would have been nearly in local 
equilibrium. It thus appeared probable that, by establishing experimentally 
similar sink flows, one could examine a family of turbulent boundary layers 
displaying, for progressively larger values of K ,  features which became more 
and more akin to those of a laminar boundary layer. It was for this reason that 
Launder & Stinchcornbe (1967) set up three similar boundary layers for values 
of K of 0.7 x and 3.0 x 10-6. The mean velocity profiles which are 
shown in figure 1 clearly display the shift towards the laminar solution with 
increasing K .  Even at  the largest value of K ,  however, it is seen from figure 2, 
there existed a large, self-preserving u‘ component of turbulence. The boundary 
layer was still essentially turbulent. 

The measurements of Launder & Stinchcombe have a number of short- 
coinings. Undertaken for a short-term research project, they lack both the 
breadth and the precision that one would like. In  particular the flow along the 
test plate was diverging slightly and consequently, for a given value of K ,  the 
boundary layers display a greater departure from the structure of a normal tur- 
bulent boundary layer than they would have, had the flow been strictly two- 
dimensional. Their measurements confirmed, however, the implicationof Schraub 
& Kline’s work, namely that, over a limited range of accelerations, turbulent 
boundary layers may occur which display marked differences in structure (par- 
ticularly within the sublayer), from those, say, of a flat-plate boundary layer. 
Nevertheless, the boundary layers are essentially turbulent since they are not in 
transit from the turbulent to the laminar state. Following Schraub & Kline, 
these boundary layers are here described as ‘laminarescent ’. 

The present contribution is principally concerned with the numerical solution 
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of the Reynolds equations for sink flow turbulent boundary layers. The solutions 
are obtained by using the mixing-length hypothesis to relate the turbulent shear 
stress to the mean velocity gradient. In particular, the Van Driest (1956) speci- 
fication of mixing length is adopted throughout the wall region. The chosen 
momentum-transport model yields predictions in satisfactory agreement with 
measurement for values of K up to about 

For steeper accelerations, it is shown that, by allowing theVanDriest ‘constant’, 
A+, to increase with K ,  the model yields plausible predictions of the mean velocity 
profile, R, and H ,  for laminarescent boundary layers. 

2. Outline of the analysis 
A complete analysis is contained in the appendix; here, merely the principal 

steps will be given. 
Townsend (1956) has demonstrated that, for a plane sink flow, the boundary- 

layer momentum and continuity equations for a constant-properties turbulent 
fluid may be reduced to an ordinary differential equation in terms of a similarity 
variable proportional to Uy/v. This equation may be written 

where f is the normalized velocity u/ U ,  S is the normalized Reynolds shear stress 
- m/ U2 and primes denote differentiation with respect to the similarity variable 
7, defined as (Uy /v )  $3. 

The Prandtl mixing-length hypothesis is used to relate the turbulent shear 
stress, - p  dd, to the mean velocity gradient. Although there are well-founded 
physical grounds for discarding this momentum-transport model there are two 
reasons why its use in the prediction of sink flow boundary layers may be accept- 
able. First, the boundary layers are similar from station to station and the 
objection that Prandtl’s mixing-length hypothesis does not permit the shear- 
stress profile to ‘float’ freely from the velocity profile is not important. Moreover, 
in the outer region of the boundary layer where confidence in the mixing-length 
theory breaks down, the shear stresses are so much smaller than the wall shear 
stress that an imperfect specification of mixing length has only a small effect 
on the predicted boundary-layer profile. 

Over a region near the wall, the Van Driest (1956) specification of mixing 
length, 1, is adopted, 

It is evident from (2) that A+ may be interpreted as a dimensionless sublayer 
thickness. Van Driest proposed that A+ should be a constant (equal to 26) and 
a set of solutions have been obtained for this value of A+. However, a number of 
workers have found from experiments on strongly accelerated turbulent 
boundary layers that the most obvious change in structure of a boundary layer 
reverting towards laminar was that the viscous sublayer grew appreciably 
(in terms of y+). Accordingly, further solutions (and these form the main con- 

~ 

1 = ky(1-exp(-y+/A+)). (2) 
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tribution of the present paper) were computed for which A+ increased with K .  
The basis of the A+(K)  variation is given in the following section. 

Over the outer part of the layer the mixing length was assumed to be constant, 
equal to about 10 % of the boundary-layer thickness. Moreover, the viscous 
term, f", in (1) was neglected. The omission of this term greatly simplified the 
task of obtaining numerical solutions to the boundary-layer equation for an 
analytic solution to the outer region was then possible. Standard iterative 
procedures could then be adopted for matching the numerical solution for the 
inner region to the analytic form for the outer region. 

3. Presentation and discussion of results 
Solutions with A+ constant 

Figures 3 and 4 display comparisons of predicted sink flow velocity profiles 
with experimental data. The predicted profiles are those obtained by setting 
A+ equal to 26. Figure 3 shows the mean velocity profiles on linear f, 7 axes; 
the laminar solution of Pohlhausen (1921) is also shown. The experimental data 
are those of Herring & Norbury (1967) and Jones (1967). 

1.0 

0.2 

1 I I I I I I 1 1 I 
0 1 2 3 4 5 6 7 8 9 

7 (Uy/v)  K t  

FIGURE 3. Mean velocity profiles for sink flow boundary layers. m, Herring & Norbury; 
A ,  Jones. -- , laminar solution: (a) -, K = 2.4 x lo-'; (5) -, K = 2.2 x 

The Herring & Norbury data were of 'equilibrium' rather than 'similar' 
boundary layers so some explanation is needed to justify using their results in 
the comparison. Formally, an equilibrium boundary layer is one which has 
developed for sufficient time in a pressure gradient whose magnitude is adjusted 
so that the parameter ,8 (defined as - ( ~ J T ~ )  dpldx) is constant at all stations in 
the flow. When the equilibrium state is reached, all of the velocity profile outside 
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the viscous layer is self-preserving when plotted in velocity-defect co-ordinates. 
It is noted that /3 = 2 K R , H / c f .  (3) 

Thus similar sink flow boundary layers are a particular subset of equilibrium 
boundary layers; flows in which each of the parameters on the right side of 
equation (3) are separately constant. Mellor & Gibson (1963) originally suggested 
that equilibrium boundary layers could not be obtained for values of /3 greater 
than 0-5. Launder & Stinchcornbe (1967) showed, however, that /? = 0.5 
was merely a dividing line between two types of equilibrium boundary layer. 

1 1 I I I I I I I  1 I I I 1  I l L  
10 2 3 4 5 6 7 8910 ’  2 3 4 5 6 7 8 9103 

Y+ 

FIGURE 4. Mean velocity profiles, universal co-ordinates. , Jones ; 0 ,  Herring & Nor- 
bury. Curves: (a )  -, laminar: ( b )  -, u+ = l/k In y++c:  - - -, K = 2.2 x 10-6, A+ = 
61;  (c) ---, K = 2 . 4 ~  lo-’, A+ = 26; (d )  ---, K = 2 . 2 ~  A+ = 26. 

For /3 < 0.5, the Reynolds number would increase indefinitely with x; for 
p > 0.5, the boundary layer would approach asymptotically the similar sink 
flow condition. The Herring & Norbury data shown in figure 3, for which /3 = 
0.53, fall into the latter category. Moreover, an examination of their tabulated 
data implied that dR,ldR, was insignificant compared with the other terms in the 
momentum-integral equation? a t  their last measuring station. Thus the 
velocity profile at  this station (which is the one plotted in figure 3) may reason- 
ably be assumed to be very close to similar. 

It is seen from figure 3 that the data of Herring & Norbury are, indeed, well 
predicted by the theoretical solution. Agreement is less satisfactory, however, 
with Jones’s data at  K = 2.2 x 10V. The discrepancy between measurement and 

t The momentum-integral equation may be written : dR,/dR, + R, K ( H  + 1) = icr. 
,4 
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prediction is greatest near the wall, where the slope of the theoretical profile 
is considerably greater than the measured. 

The above discrepancy is shown in sharper relief in figure 4, where theoretical 
and experimental profiles are plotted semi-logarithmically on u+, y+ axes. 
The laminar solution and the universal profile 

U+ = (1/0.4)1ny++5.3 (4)t 

are also plotted. At K = 0.24 x lOW, the predicted profile and the data of 
Herring & Norbury lie close to equation (4). At K = 2.2 x the predicted 
profile lies somewhat below equation (4) but the measured solution lies consider- 
ably above it; that is, the effective sublayer thickness of the measured solution 
is significantly thicker than that of the predicted profile. 
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FIGURE 5. Variation of momentum deficit thickness Reynolds number with K .  0 .  
Herring & Norbury; m, Badri Narayanan; 0, Launder & Stinchcombe; 0 ,  Jones 
--, laminar solution; - -, turbulent solution, A+ = 26; - - --, turbulent solution, 
A+ = f ( L ) .  

Further evidence of the respective successes and shortcomings of the predicted 
solutions is presented in figures 5 and 6. Since R, and H are constant for a given 
value of K ,  a single point on these graphs corresponds to a particular sink flow 
boundary layer. Here, attention is focused on the predicted solution for Af = 26 

t 5.3 is the additive constant in the universal law implied by the choice of k = 0.40 
andA+ = 26. 
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marked by a dashed line. In figure 5, the Herring & Norbury data and those of 
Badri Narayanan & Ramjee (1968) for their mildest acceleration lie very close 
to the predicted turbulent solution. Jones’s data, however, lie midway between 
the turbulent and laminar solutions as do those of Badri Narayanan & Ramjee 
for their steeper accelerations (though, with the latter data, it  seems doubtful 
whether the boundary layers had truly reached their self-preserving condition). 
The earlier data of Launder & Stinchcornbe (1967) are also shown and clearly dis- 
play the shift of the measured boundary layer from turbulent towards laminar 
as K is increased. In fact, the indicated shift is too great because, as mentioned 
in 5 1, these boundary layers were not two-dimensional. Thus, at K = 3 x 
their measured momentum-thickness Reynolds number was marginally less 
than the laminar solution although, as was seen in figure 2, a self-preserving 
turbulence intensity distribution existed in these layers. 
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FIGURE 6. Variation of shape factor with K .  m, Badri Narayanan; 0, Launder & Stinch- 
combe; , Jones; 0 ,  Herring & Norbury. ~ , laminar solution; ---, A+ = f(L); 
-- , A +  = 26. 

The predicted and measured variation of the shape parameter, H ,  with K 
is shown in figure 6. Because the viscous sublayer has been included in the 
theoretical solution the shape factor increases with K .  The rise in H ,  however, 
is not nearly as rapid as that of the measured solutions. In  this figure the data of 
Launder & Stinchcornbe do not appear as anomalous as they do in figure 5 .  
This result is in accordance with expectations for it would be anticipated that 
the divergence of the flow would have a greater effect on the Reynolds number 
than on the shape of the boundary layer. 

Xolutions with A+ dependent upon  L 
The above comparisons with data have shown the predicted solutions to be in 
close agreement with measurements for values of K up to about 10V. For 
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higher values of K ,  the data show a progressive shift towards the laminar 
boundary-layer solution. Indeed, the data on figure 6 would seem to suggest 
that no non-laminar solution exists for a value of K in excess of 4 x 10-6 (and 
this value is in agreement with the measurements of Schraub & Kline (1965), 
who found that the sublayer streaks ceased to form when K was greater than 

Figure 4 had shown clearly that one important shortcoming of the theoretical 
solution was that no means were incorporated to allow the region over which 
viscous effects were important to grow as K increased.? Since the boundary 
layers were essentially turbulent, however, it seemed worth investigating 

3-5 x 10-6). 

(UYIV) K t  
FIGURE 7. Mean velocity profiles, experimental and predicted solution to sink flow 
boundary layer; K = 2.2 x 10-8. 0, Jones, K = 2.2 x -, A+ = 61 ; - - -, A +  = 26. 

whether by increasing A+ one could obtain solutions in tolerable agreement 
with experiment. A solution of equation (8) was thus recomputed with K = 
2.2 x 10-6 and A+ chosen (by trial and error) such that the predicted profile 
had the same momentum-thickness Reynolds number as Jones’s measured 
solution, i.e. R, = 430. The required value of A+ was 61 and in figures 4 and 7 
the theoretical and measured velocity profiles are plotted. The result surpassed 
expectations for the complete experimental profile was indistinguishable 
from that predicted with A+ = 61. In  principle, it would be feasible to establish 
very many sink flow boundary layers and determine empirically the value 
of A+ which generated the same theoretical Reynolds numbers as the measured 
profiles. In  the absence of further experimental information, however, it is 
necessary to speculate how A+ may depend on K or, equivalently, on L(Kc?#). 

t There is also a considerable amount of data reported for ?Lon-similar turbulent bound- 
ary layers showing a similar thickenjng of the sublayer (Launder 1964, Patel 1965, Schraub 
t Kline 1965, Patel & Head 1968, and Badri Narayanan & Ramjee 1968). 
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Coles (1962) has remarked that the maximum value of skin friction coefficient 
that a turbulent boundary layer in zero pressure gradient can attain appears 
to be about 0.0048. Although the connexion with these boundary layers appeared 
rather tenuous, it  seemed notable that this was the implied value of c, for Jones’s 
sink flow measurements. Moreover, like sink flow boundary layers, low Reynolds 
number turbulent flows in zero pressure gradient have no wake-component in 
their velocity profile. Thus the similarity of these two types of boundary layer 
may be closer than it would superficially appear to be. It was therefore as- 
sumed that, in sink flow layers, the viscous sublayer grew in thickness to prevent 
the skin friction coefficient exceeding this critical value. With this constraint 
imposed, solutions were recomputed to determine the variation of A+ with L. 
The calculated values of A+ are plotted in figure 8; it is seen they are well cor- 
related by the equation 

( 5 )  } 
L G 1.9 x 10-3, A+ = 26; 

L > 1.9 x 10-3, A+ = 11 + 7-9 x 1 0 3 ~ .  

The predicted variations of R, and H with K ,  with A+ calculated from ( 5 ) ,  
are represented by the chain lines in figures 5 and 6. The predictions display 
a plausible shift from the turbulent to the laminar solution as K increases. 

20 
0 

0 4 8 12 16 
L X  103 

FIGURE 8. Provisional A+(L) function for sink flow boundary layers. 0 ,  Jones. 

Conclusions 
Theoretical solutions have been obtained to sink flow turbulent boundary 

layers by using the mixing-length hypothesis to relate the shear stress to the 
mean velocity gradient. For modest accelerations (K  < lop6) good agreement 
with experimental data is obtained by taking the Van Driest sublayer function, 
A+, equal to 26. For steeper accelerations, it has been shown that, by allowing 
A+ to increase with K such that the skin friction coefficient remains constant, 



Sink  flow turbulent boundary luayers 827 

the theoretical solutions display a progressive shift towards the laminar solution 
in good agreement with existing data of sink flow laminarescent boundary 
layers. 

Appendix. Analysis 

sible turbulent boundary layer are: 
The two-dimensional momentum and continuity equations for an incompres- 

(A11 
uau vau UdU va2u a 2 2  a - - --+- = __ (u’2- v‘,), ax ay d x  

au av 
ax ay 
-+- = 0. 

Townsend (1956) has demonstrated that, for flow between converging planes, 
equations (A 1) and (A 2) are reducible to an ordinary differential equation in 
terms of a similarity variable proportional to Uy/v .  With the following normaliza- 
tions : 

equations (A 1) and (A2) may be expressed 

l - f2+f”+K-W+ZN+“ = 0 (A 3) 
with boundary conditionsf(0) = 0 andf(co) = 1. 

With the above choice of variables, it is easily demonstrated that 

R, = K 4  f(1 - f ) d p  and ct = 2K4ff(0); 

thus, as Townsend (1956) has remarked, the skin friction coefficient and any 
local length-scale Reynolds number are invariant with x. 

Solutions to equations ( 8 3 )  will yield a family of velocity profiles for various 
values of the parameter K .  Indeed, with the above choice of similarity variable, 
the laminar solution (i.e. S and N equal to zero), is independent of K ;  hence 
laminar and turbulent boundary layers together comprise a unique one-para- 
meter set of sink flow solutions. 

In  obtaining solutions to (A 3) below, the Reynolds normal stress, N ,  and its 
derivative have been neglected. This is a usual assumption in turbulent boun- 
dary-layer analysis and is analogous to the neglect of streamwise molecular 
diffusion for laminar flow. The terms have been included this far merely to 
demonstrate that their retention did not affect the existence of similar solutions. 
Prandtl’s mixing-length hypothesis is used to relate the turbulent shear stress 
to the mean velocity gradient. 

c 

Thus it is assumed that 

where the variation of the mixing length, I ,  across the boundary layer must be 
assigned. 
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Throughout a region close to the surface, Van Driest’s (1956) recommendation 
for the variation of mixing length is adopted: 

1 = ky[l-exp(-y+/A+)] (0 6 y 6 y j ) ,  (A 5 )  

where the value of yi is chosen below. Van Driest found that, with k and A+ 
assigned the values 0-40 and 26 respectively, (A4) and (A5) predicted mean velo- 
city profiles in turbulent pipe flow which were in excellent agreement with 
measured values throughout the sublayer and logarithmic regions of the flow. 
Here the above value of k is retained but in $ 3  the effect of letting A+ depend 
upon the acceleration parameter K is examined. The region of the boundary 
layer over which (A5) is applied is henceforth called the ‘inner region’; corres- 
pondingly, the flow at distances from the wall greater than yi is termed the 
‘outer region’. 

Por the outer region, the viscous term in (A3), f”, is neglected. With this 
simplification, the use of the mixing-length hypothesis leads to a definite outer 
edge to the boundary layer. It is known from experiment that rotational tur- 
bulent fluid ceases at a finite height above the surface and so a finite edge to the 
theoretical solutions conforms with reality. Moreover, the neglect off” leads, 
as is seen, to a great simplification in the task of obtaining solutions to (A 3). The 
outer boundary condition of (A 3) thus becomes f ( q s )  = 1 where qs is the value 
of thesimilarity variableat the edge of the layer. Since vs is unknown, how- 
ever, the further constraint that f’(qs) = 0 is applied to enable its value to be 
determined. 

Escudier (1964) found, from an examination of a diversity of turbulent boun- 
dary layers (but not including severely accelerated flows), that the mixing length 
over the outer 80 % of the boundary layer was reasonably constant and equal 
to about 10 % of the layer’s thickness. Here the value of yi is set equal to (A13/k) 
and the assumed constant value of mixing length over the outer region is 

E = MA8 (yi < y 6 6). (A 6) 

In  the solutions presented below, h is assigned the value of 0.09 and the value 
of M is chosen to give a continuous shear stress at the join; its value is determined 
from the expression 

In practice, M differs negligibly from unity for values of K up to More- 
over, for sink flow boundary layers, au/ay is always positive so the magnitude 
signs in (A 4) and (A 7) may be dropped. 

When the turbulent shear-stress formulation implied by (A4), (A5) and (A6) 
is cast into dimensionless form there results: 

inner region (0 6 q < qj): S = [kq(l  -exp t ) f ’ ] 2 ;  

outer region (qs < 7 < qs): S = (Mhq,f’)2; 

(A 8) 

(A 9) 

where t = - q(cr/2K)&/A+. 
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Expressions for S’ are obtained by differentiating (A 8) and (A 9) with respect 
to q and these are then substituted in the momentum equation. The following 
two second-order equations in f result: 

0 < q < qj: (f” + 2k2K-4[[T2(f’2 +f’ f”q)  + T3TJ21) 
x (1 - k27r”f”2T3/T4)-’+ 1 -f2 = 0, (A 10) 

where Tl = exp ( t ) ,  
TZ G (1 - Tl)2, 
T3 = (1 - TJ TJ(A+K4), 
T, = (S+K*f’)*, 

where S is given by (A8), 

q, < 7 6 9,: 1-f2+2K-4(Mhqs)2f’fn = 0. ( A l l )  

The numerical Solution of (A10) and ( A l l )  would normally be an arduous 
business. To start the solution, one would need to guessf‘(0) and 7,. The numeri- 
cal solution would then have to be performed many times, iterating on both these 
variables, until the outer boundary conditions f (q , )  = 1 and f’(qs) = 0 were 
satisfied. However, an analytic solution to (A 11) was found: 

where z E [(2 +f)/(l-fl]* and the term within the curly brackets on the right 
of (A 12) is merely 

3/E* z/(l+z3). 

This discovery much simplified the task of obtaining numerical solutions to 
the inner region of the boundary layer; the procedure was as follows. Equation 
(A 11) was multiplied by f’ and integrated between qj and 7,. After some re- 
arrangement the result was expressed : 

} (A 13) 
G(q)l, = 2K-4 

G(r )  = [(I -f)2 (2 +f ,I /rf’3(~~rls>21.  where 

With a guessed value off’(O), (A 10) was integrated outwards across the layer 
by a fourth-order Runge-Kutta procedure. Once the solution had proceeded 
beyond the viscous sublayer, G(q) was computed a t  each step to determine 
whether its value was greater or less than 2K-g. If it was greater, the solution 
proceeded another step; if it  was less, the computation was halted and the current 
value of q was ascribed to qj .  In  fact, as G(q) became close to 2K-8, the step size 
was progressively reduced so that 9j was determined accurately. One thus ob- 
tained an implied value for the boundary-layer thickness, q,, i.e. q,, = 7cq,/h. 

From (A12), however, a second implied value for the layer thickness, qBb, 
could be obtained by replacing q/qa by h/k and substituting the value off ob- 
tained above for the inner solution at q,. Unless the guessed value of f‘(0) had 
been correct q,, and qaa would differ. However, by standard iteration procedures 
the correct solution could rapidly be extracted. 
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It is worth noting that a very simple analytic solution to the outer region 
is obtained if equation (A 11) is partially linearized. With the substitution 
(1 - e )  E f andf2 approximated by (1 - 2e) ,  one readily obtains the result 

This approximate solution enables the cubic variation of velocity with dis- 
tance in the outer region to be readily discerned. A second set of inner solutions 
were computed by matching the numerical inner solution to (A 14) rather than 
to (A12). The results were extremely close to the exact solutions; Reynolds 
numbers and friction factors differed by less than 0.3 % from the exact values 
over the range of acceleration parameters examined in this paper. This measure 
of agreement could have been anticipated because the velocity at  the join was 
approximately 0.9U. The maximum error in the outer region resulting from 
linearizing the convective term was thus only about 1 %. 
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